Resit test 3 Numerical Mathematrics 2
 April 13, 2023

Duration: 1 hour.

In front of the questions one finds the points. The sum of the points plus 1 gives the end mark for this test.

1. Suppose that $f(x)=\sum_{i=0}^{\infty} a_{i} \phi_{i}(x)$, where $\phi_{i}, i=0, \cdots$, are orthogonal polynomials in some innerproduct.
(a) [1] Show that $a_{i}=\left(f, \phi_{i}\right) /\left(\phi_{i}, \phi_{i}\right)$.
(b) [1.5] Show that $\sum_{i=0}^{\infty} a_{i}^{2}\left(\phi_{i}, \phi_{i}\right)=(f, f)$. What is the name of this expression and what does this expression mean?
(c) [0.5] Assume $f(x)=p_{n}(x)$ where p_{n} is a polynomial of degree n. Show that $a_{i}=0$ for $i>n$.
(d) [0.5] What will be the error if we approximate $f(x)=p_{n}(x)$ by the first $n-1$ terms of the expansion in orthogonal polynomials?
(e) [0.5] Suppose $f(x)$ is defined on a finite interval. For which orthogonal polynomials ϕ_{i} will the approximation in the previous part give us the minimax approximation, i.e., the best polynomial approximation. Explain also why.
(f) [0.5] Suppose that the coefficients a_{i} decrease rapidly with i. Based on the previous parts, show that the same orthogonal polynomials as in part e are the best choice to find least squares approximations to the minimax approximation?
2. Consider for arbitrary $f(x)$ the integral $\int_{0}^{\infty} \exp (-x) f(x) d x$.
(a) [3.5] Using orthogonal polynomials, derive that for this integral the Gauss rule using one interpolation point is simply $f(1)$.
(b) [1] Determine the degree of exactness of the rule in the previous part by applying it to $1, x, x^{2}, \ldots$, respectively. Does this comply with the theory?
